Search results
Results from the WOW.Com Content Network
A (existential second-order) formula is one additionally having some existential quantifiers over second order variables, i.e. …, where is a first-order formula. The fragment of second-order logic consisting only of existential second-order formulas is called existential second-order logic and abbreviated as ESO, as , or even as ∃SO.
In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. [1] It is particularly important in the logic of graphs , because of Courcelle's theorem , which provides algorithms for evaluating monadic second-order formulas over graphs ...
In addition to Fagin's 1974 paper, [1] the 1999 textbook by Immerman provides a detailed proof of the theorem. [4] It is straightforward to show that every existential second-order formula can be recognized in NP, by nondeterministically choosing the value of all existentially-qualified variables, so the main part of the proof is to show that every language in NP can be described by an ...
However, with free second order variables, not every S2S formula can be expressed in second order arithmetic through just Π 1 1 transfinite recursion (see reverse mathematics). RCA 0 + (schema) {τ: τ is a true S2S sentence} is equivalent to (schema) {τ: τ is a Π 1 3 sentence provable in Π 1 2-CA 0}.
The system Π 1 1-comprehension is the system consisting of the basic axioms, plus the ordinary second-order induction axiom and the comprehension axiom for every (boldface [11]) Π 1 1 formula φ. This is equivalent to Σ 1 1 -comprehension (on the other hand, Δ 1 1 -comprehension, defined analogously to Δ 0 1 -comprehension, is weaker).
(I. III. I.) [2] Note Hume's use of the word number in the ancient sense, to mean a set or collection of things rather than the common modern notion of "positive integer". The ancient Greek notion of number (arithmos) is of a finite plurality composed of units. See Aristotle, Metaphysics, 1020a14 and Euclid, Elements, Book VII, Definition 1 and ...
In the monadic second-order logic of graphs, the variables represent objects of up to four types: vertices, edges, sets of vertices, and sets of edges. There are two main variations of monadic second-order graph logic: MSO 1 in which only vertex and vertex set variables are allowed, and MSO 2 in which all four types of variables are allowed ...
1 · 2 = 1 + 1, and 2 · 2 = 2 + 2, and 3 · 2 = 3 + 3, ..., and 100 · 2 = 100 + 100, and ..., etc. This has the appearance of an infinite conjunction of propositions. From the point of view of formal languages, this is immediately a problem, since syntax rules are expected to generate finite words.