Search results
Results from the WOW.Com Content Network
An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the accumulator and other registers, this could be considered either byte-addressable or word-addressable. 32-bit x86 processors, which address memory in 8-bit units but have 32-bit general-purpose registers and can operate on 32-bit items with a ...
In theory, modern byte-addressable 64-bit computers can address 2 64 bytes (16 exbibytes), but in practice the amount of memory is limited by the CPU, the memory controller, or the printed circuit board design (e.g., number of physical memory connectors or amount of soldered-on memory).
Hence, a processor with 64-bit memory addresses can directly access 2 64 bytes (16 exabytes or EB) of byte-addressable memory. With no further qualification, a 64-bit computer architecture generally has integer and addressing registers that are 64 bits wide, allowing direct support for 64-bit data types and addresses.
A processor with 128-bit byte addressing could directly address up to 2 128 (over 3.40 × 10 38) bytes, which would greatly exceed the total data captured, created, or replicated on Earth as of 2018, which has been estimated to be around 33 zettabytes (over 2 74 bytes). [1] A 128-bit register can store 2 128 (over 3.40 × 10 38) different values.
The IBM System/360 introduced byte-addressable memory with 8-bit bytes, as opposed to bit-addressable or decimal digit-addressable or word-addressable memory, although its general-purpose registers were 32 bits wide, and addresses were contained in the lower 24 bits of those addresses.
In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits (2 octets) wide.Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.
In computing, a virtual address space (VAS) or address space is the set of ranges of virtual addresses that an operating system makes available to a process. [1] The range of virtual addresses usually starts at a low address and can extend to the highest address allowed by the computer's instruction set architecture and supported by the operating system's pointer size implementation, which can ...
When reading from memory, data addressed by MAR is fed into the MDR (memory data register) and then used by the CPU. When writing to memory, the CPU writes data from MDR to the memory location whose address is stored in MAR. MAR, which is found inside the CPU, goes either to the RAM (random-access memory) or cache.