enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Every sequence of digits, in any base, is the sequence of initial digits of some factorial number in that base. [ 60 ] Another result on divisibility of factorials, Wilson's theorem , states that ( n − 1 ) ! + 1 {\displaystyle (n-1)!+1} is divisible by n {\displaystyle n} if and only if n {\displaystyle n} is a prime number . [ 52 ]

  3. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n.

  4. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    A natural number is a sociable factorion if it is a periodic point for , where ⁡ = for a positive integer, and forms a cycle of period . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .

  5. Kempner function - Wikipedia

    en.wikipedia.org/wiki/Kempner_function

    The Kempner function () of an arbitrary number is the maximum, over the prime powers dividing , of (). [4] When n {\displaystyle n} is itself a prime power p e {\displaystyle p^{e}} , its Kempner function may be found in polynomial time by sequentially scanning the multiples of p {\displaystyle p} until finding the first one whose factorial ...

  6. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.

  7. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...

  8. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  9. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically , its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form