Search results
Results from the WOW.Com Content Network
The oxygen-burning process is a set of nuclear fusion reactions that take place in massive stars that have used up the lighter elements in their cores. Oxygen-burning is preceded by the neon-burning process and succeeded by the silicon-burning process. As the neon-burning process ends, the core of the star contracts and heats until it reaches ...
Scientists say nuclear fusion is very different than nuclear fission, which powers hundreds of power plants across the world. ... "Fission, which is commercially available and has been so since ...
Fusion ignition is the point at which a nuclear fusion reaction becomes self-sustaining. This occurs when the energy being given off by the reaction heats the fuel mass more rapidly than it cools. In other words, fusion ignition is the point at which the increasing self-heating of the nuclear fusion removes the need for external heating. [ 1 ]
Nuclear fusion occurs when nuclei, protons and neutrons, come close enough together for the nuclear force to pull them together into a single larger nucleus. Opposing this action is the electrostatic force, which causes electrically charged particles with like charges, like protons, to repel each other.
So the experiment produced only 1% of the energy it used. “This laser was designed to give us as much juice as possible to make these incredible conditions happen in the laboratory,” Herrmann ...
This is why ITER is so large. In contrast, inertial confinement systems approach useful triple product values via higher density, and have short confinement intervals. In NIF, the initial frozen hydrogen fuel load has a density less than water that is increased to about 100 times the density of lead. In these conditions, the rate of fusion is ...
ChatGPT’s boss claims nuclear fusion is the answer to AI’s soaring energy needs. Not so fast, experts say. ... “We’re going to have to make hard decisions” about who gets the energy ...
Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released. A nuclear fusion process that produces atomic nuclei lighter than iron-56 or nickel-62 will generally release energy.