Search results
Results from the WOW.Com Content Network
GF(2) can be identified with the field of the integers modulo 2, that is, the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers: GF(2) = Z/2Z. Notations Z 2 and Z 2 {\displaystyle \mathbb {Z} _{2}} may be encountered although they can be confused with the notation of 2 -adic integers .
A left arithmetic shift by n is equivalent to multiplying by 2 n (provided the value does not overflow), while a right arithmetic shift by n of a two's complement value is equivalent to taking the floor of division by 2 n. If the binary number is treated as ones' complement, then the same right-shift operation results in division by 2 n and ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Note that is equivalent to zero in the above equation because addition of coefficients is performed modulo 2: = + = (+) = (). Polynomial addition modulo 2 is the same as bitwise XOR. Since XOR is the inverse of itself, polynominal subtraction modulo 2 is the same as bitwise XOR too.
In cryptography, differential equations of addition (DEA) are one of the most basic equations related to differential cryptanalysis that mix additions over two different groups (e.g. addition modulo 2 32 and addition over GF(2)) and where input and output differences are expressed as XORs.
1110 2 XOR 1001 2 = 0111 2 (this is equivalent to addition without carry) As noted above, since exclusive disjunction is identical to addition modulo 2, the bitwise exclusive disjunction of two n -bit strings is identical to the standard vector of addition in the vector space ( Z / 2 Z ) n {\\displaystyle (\\mathbb {Z} /2\\mathbb {Z} )^{n}} .
This operation is also known as "bitwise xor" or "vector addition over GF" (bitwise addition modulo 2). Within combinatorial game theory it is usually called the nim-sum, as it will be called here. The nim-sum of x and y is written x ⊕ y to distinguish it from the ordinary sum, x + y. An example of the calculation with heaps of size 3, 4, and ...
Here, this is done after each addition, so that at the end of the for loop the sums are always reduced to 8 bits. At the end of the input data, the two sums are combined into the 16-bit Fletcher checksum value and returned by the function on line 13. Each sum is computed modulo 255 and thus remains less than 0xFF at all times.