Search results
Results from the WOW.Com Content Network
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor. Most bitwise operations are presented as two-operand ...
Note that is equivalent to zero in the above equation because addition of coefficients is performed modulo 2: = + = (+) = (). Polynomial addition modulo 2 is the same as bitwise XOR. Since XOR is the inverse of itself, polynominal subtraction modulo 2 is the same as bitwise XOR too.
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
GF(2) can be identified with the field of the integers modulo 2, that is, the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers: GF(2) = Z/2Z. Notations Z 2 and Z 2 {\displaystyle \mathbb {Z} _{2}} may be encountered although they can be confused with the notation of 2 -adic integers .
This operation is also known as "bitwise xor" or "vector addition over GF" (bitwise addition modulo 2). Within combinatorial game theory it is usually called the nim-sum, as it will be called here. The nim-sum of x and y is written x ⊕ y to distinguish it from the ordinary sum, x + y. An example of the calculation with heaps of size 3, 4, and ...
In cryptography, differential equations of addition (DEA) are one of the most basic equations related to differential cryptanalysis that mix additions over two different groups (e.g. addition modulo 2 32 and addition over GF(2)) and where input and output differences are expressed as XORs.
Simon's problem is an example of a problem that ... , where denotes addition modulo 2. Applying the quantum oracle gives; ... is the sum of the bitwise product). This ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.