enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels.

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  4. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based post-optimizations). However RVMs use an expectation maximization (EM)-like learning method and are therefore at risk of local minima.

  5. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Potential drawbacks of the SVM include the following aspects: Requires full labeling of input data; Uncalibrated class membership probabilities—SVM stems from Vapnik's theory which avoids estimating probabilities on finite data; The SVM is only directly applicable for two-class tasks.

  6. Cognitive model - Wikipedia

    en.wikipedia.org/wiki/Cognitive_model

    A cognitive model is a representation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set of equations to software programs that interact with the same tools that humans use to complete tasks (e.g., computer mouse and keyboard).

  7. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a distribution over a multi-dimensional space and a graph that is a compact or factorized representation of a set of independences that hold in the specific distribution.

  8. Platt scaling - Wikipedia

    en.wikipedia.org/wiki/Platt_scaling

    In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]

  9. Schema (psychology) - Wikipedia

    en.wikipedia.org/wiki/Schema_(psychology)

    In psychology and cognitive science, a schema (pl.: schemata or schemas) describes a pattern of thought or behavior that organizes categories of information and the relationships among them. [ 1 ] [ 2 ] It can also be described as a mental structure of preconceived ideas, a framework representing some aspect of the world, or a system of ...