Search results
Results from the WOW.Com Content Network
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Hexspeak is a novelty form of variant English spelling using the hexadecimal digits. Created by programmers as memorable magic numbers, hexspeak words can serve as a clear and unique identifier with which to mark memory or data. Hexadecimal notation represents numbers using the 16 digits 0123456789ABCDEF.
For example, a packed decimal value encoded with the bytes 12 34 56 7C represents the fixed-point value +1,234.567 when the implied decimal point is located between the fourth and fifth digits: 12 34 56 7C 12 34.56 7+ The decimal point is not actually stored in memory, as the packed BCD storage format does not provide for it.
In IEEE 754 parlance, there are 10 bits of significand, but there are 11 bits of significand precision (log 10 (2 11) ≈ 3.311 decimal digits, or 4 digits ± slightly less than 5 units in the last place).
Use: {{Hexadecimal|x}} where x is the decimal number to be converted to a hexadecimal. Decimals and fractions will be rounded down. Decimals and fractions will be rounded down. The number is, by default, formatted with a final subscript 16 to display the base.
Six hexadecimal digits of precision is roughly equivalent to six decimal digits (i.e. (6 − 1) log 10 (16) ≈ 6.02). A conversion of single precision hexadecimal float to decimal string would require at least 9 significant digits (i.e. 6 log 10 (16) + 1 ≈ 8.22) in order to convert back to the same hexadecimal float value.
This gives from 6 to 9 significant decimal digits precision. If a decimal string with at most 6 significant digits is converted to the IEEE 754 single-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 single ...
The calculator can be set to display values in binary, octal, or hexadecimal form, as well as the default decimal. When a non-decimal base is selected, calculation results are truncated to integers. Regardless of which display base is set, non-decimal numbers must be entered with a suffix indicating their base, which involves three or more ...