Search results
Results from the WOW.Com Content Network
An implementation of virtual memory on a system using segmentation without paging requires that entire segments be swapped back and forth between main memory and secondary storage. When a segment is swapped in, the operating system has to allocate enough contiguous free memory to hold the entire segment.
Virtual memory combines active RAM and inactive memory on DASD [a] to form a large range of contiguous addresses.. In computing, virtual memory, or virtual storage, [b] is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" [3] which "creates the illusion to users of a very large (main) memory".
In computer operating systems, memory paging is a memory management scheme that eliminates the need for contiguous memory allocation. [1] [2] It is often combined with memory swapping, a technique where parts of a process can be swapped out of memory to secondary storage in order to allow the size of the physical address space to exceed the physical memory of the system.
A similar mechanism is used for memory-mapped files, which are mapped to virtual memory and loaded to physical memory on demand. When physical memory is not full this is a simple operation; the page is written back into physical memory, the page table and TLB are updated, and the instruction is restarted.
In computer operating systems, demand paging (as opposed to anticipatory paging) is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only when an attempt is made to access it and that page is not already in memory (i.e., if a page fault occurs).
Similarly, a page frame is the smallest fixed-length contiguous block of physical memory into which memory pages are mapped by the operating system. [1] [2] [3] A transfer of pages between main memory and an auxiliary store, such as a hard disk drive, is referred to as paging or swapping. [4]
The 80286 added an MMU that supports segmentation, but not paging. When segmentation is enabled by turning on protected mode, the segment number acts as an index into a table of segment descriptors; a segment descriptor contains a base physical address, a segment length, a presence bit to indicate whether the segment is currently in memory ...
Virtual addresses seen by the program are added to the contents of the base register to generate the physical address. The address is checked against the contents of the bounds register to prevent a process from accessing memory beyond its assigned segment. The operating system is not constrained by the hardware and can access all of physical ...