Search results
Results from the WOW.Com Content Network
In a cyclic orthodiagonal quadrilateral, the anticenter coincides with the point where the diagonals intersect. [3] Brahmagupta's theorem states that for a cyclic orthodiagonal quadrilateral, the perpendicular from any side through the point of intersection of the diagonals bisects the opposite side. [3]
[15] [17] The right kites are exactly the kites that are cyclic quadrilaterals, meaning that there is a circle that passes through all their vertices. [18] The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well ...
If a cyclic quadrilateral is also orthodiagonal, the distance from the circumcenter to any side equals half the length of the opposite side. [23] In a cyclic orthodiagonal quadrilateral, the distance between the midpoints of the diagonals equals the distance between the circumcenter and the point where the diagonals intersect. [23]
In fact, the incenters form an orthodiagonal cyclic quadrilateral. [1]: p.74 A related result is that the incircles can be exchanged for the excircles to the same triangles (tangent to the sides of the quadrilateral and the extensions of its diagonals).
It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic. Orthodiagonal quadrilateral: the diagonals cross at right angles. Equidiagonal quadrilateral: the diagonals are of equal length.
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, [1] is a quadrilateral that can be inscribed in a circle (cyclic quadrilateral) in which the products of the lengths of opposite sides are equal. It has several important properties.
A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...