enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+ /) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  4. Euler's four-square identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_four-square_identity

    Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).

  5. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler's identity is a special case of this: + =. This identity is particularly remarkable as it involves e, , i, 1, and 0, arguably the five most important constants in mathematics, as well as the four fundamental arithmetic operators: addition, multiplication, exponentiation, and equality.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Note that the subtraction identity is not defined if =, since the logarithm of zero is not defined. Also note that, when programming, a {\displaystyle a} and c {\displaystyle c} may have to be switched on the right hand side of the equations if c ≫ a {\displaystyle c\gg a} to avoid losing the "1 +" due to rounding errors.

  7. Pentagonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_number_theorem

    The identity implies a recurrence for calculating (), the number of partitions of n: = + () +or more formally, = ()where the summation is over all nonzero integers k (positive and negative) and is the k th generalized pentagonal number.

  8. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    Both sides of the Euler product formula converge for Re(s) > 1. The proof of Euler's identity uses only the formula for the geometric series and the fundamental theorem of arithmetic. Since the harmonic series, obtained when s = 1, diverges, Euler's formula (which becomes Π p ⁠ p / p − 1 ⁠) implies that there are infinitely many primes. [5]

  9. List of mathematical identities - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity; Binomial inverse theorem; Binomial identity; Brahmagupta–Fibonacci two-square identity; Candido's identity; Cassini and Catalan identities; Degen's eight-square identity; Difference of two squares; Euler's four-square identity; Euler ...