Search results
Results from the WOW.Com Content Network
All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the midpoint.
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
For any two simple polygons of equal area, the Bolyai–Gerwien theorem asserts that the first can be cut into polygonal pieces which can be reassembled to form the second polygon. The lengths of the sides of a polygon do not in general determine its area. [9] However, if the polygon is simple and cyclic then the sides do determine the area. [10]
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on. The sum of the external angles of any simple polygon, if only one of the two external angles is assumed at each vertex, is 2π radians (360°).
Three squares of sides R can be cut and rearranged into a dodecagon of circumradius R, yielding a proof without words that its area is 3R 2. A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12.
These include the shoelace formula for arbitrary polygons, [21] and Pick's theorem for polygons with integer vertex coordinates. [12] [22] The convex hull of a simple polygon can also be found in linear time, faster than algorithms for finding convex hulls of points that have not been connected into a polygon. [6]