Search results
Results from the WOW.Com Content Network
Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...
In mathematics, high superscripts are used for exponentiation to indicate that one number or variable is raised to the power of another number or variable. Thus y 4 is y raised to the fourth power, 2 x is 2 raised to the power of x, and the equation E = mc 2 includes a term for the speed of light squared.
n-superstrong (n≥2), n-almost huge, n-super almost huge, n-huge, n-superhuge cardinals (1-huge=huge, etc.) Wholeness axiom , rank-into-rank (Axioms I3, I2, I1, and I0) The following even stronger large cardinal properties are not consistent with the axiom of choice, but their existence has not yet been refuted in ZF alone (that is, without ...
2. Equivalence class: given an equivalence relation, [] often denotes the equivalence class of the element x. 3. Integral part: if x is a real number, [] often denotes the integral part or truncation of x, that is, the integer obtained by removing all digits after the decimal mark.
The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement. For instance, 1 m is the same as 100 cm, but the absolute difference between 2 and 1 m is 1 while the absolute difference between 200 and 100 cm is 100, giving the impression of a larger difference. [4]
When written in base 10, all multiples of 2 will end in 0, 2, 4, 6, or 8. [3] 2 is the smallest and the only even prime number, and the first Ramanujan prime. [4] It is also the first superior highly composite number, [5] and the first colossally abundant number. [6]
This is a list of axioms as that term is understood in mathematics. In epistemology, the word axiom is understood differently; see axiom and self-evidence. Individual axioms are almost always part of a larger axiomatic system.
The paradoxes do not arise with classes because there is no notion of classes containing classes. Otherwise, one could, for example, define a class of all classes that do not contain themselves, which would lead to a Russell paradox for classes. A conglomerate, on the other hand, can have proper classes as members. [2]