enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to ...

  3. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  4. Space complexity - Wikipedia

    en.wikipedia.org/wiki/Space_complexity

    This includes the memory space used by its inputs, called input space, and any other (auxiliary) memory it uses during execution, which is called auxiliary space. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as (), (⁡), (), (), etc., where n is a characteristic of the input influencing ...

  5. Algorithmic efficiency - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_efficiency

    As for time analysis above, analyze the algorithm, typically using space complexity analysis to get an estimate of the run-time memory needed as a function as the size of the input data. The result is normally expressed using Big O notation .

  6. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Since the time taken on different inputs of the same size can be different, the worst-case time complexity () is defined to be the maximum time taken over all inputs of size . If T ( n ) {\displaystyle T(n)} is a polynomial in n {\displaystyle n} , then the algorithm is said to be a polynomial time algorithm.

  7. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity) or the number of storage locations it uses (its space complexity). An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input.

  8. Game complexity - Wikipedia

    en.wikipedia.org/wiki/Game_complexity

    The asymptotic complexity is defined by the most efficient (in terms of whatever computational resource one is considering) algorithm for solving the game; the most common complexity measure (computation time) is always lower-bounded by the logarithm of the asymptotic state-space complexity, since a solution algorithm must work for every ...

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.