enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to ...

  3. Space complexity - Wikipedia

    en.wikipedia.org/wiki/Space_complexity

    This includes the memory space used by its inputs, called input space, and any other (auxiliary) memory it uses during execution, which is called auxiliary space. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as (), (⁡), (), (), etc., where n is a characteristic of the input influencing ...

  4. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Analogous definitions can be made for space requirements. Although time and space are the most well-known complexity resources, any complexity measure can be viewed as a computational resource. Complexity measures are very generally defined by the Blum complexity axioms.

  5. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  6. Complexity class - Wikipedia

    en.wikipedia.org/wiki/Complexity_class

    It turns out that there is a natural connection between circuit complexity and time complexity. Intuitively, a language with small time complexity (that is, requires relatively few sequential operations on a Turing machine), also has a small circuit complexity (that is, requires relatively few Boolean operations).

  7. PSPACE - Wikipedia

    en.wikipedia.org/wiki/PSPACE

    An alternative characterization of PSPACE is the set of problems decidable by an alternating Turing machine in polynomial time, sometimes called APTIME or just AP. [4]A logical characterization of PSPACE from descriptive complexity theory is that it is the set of problems expressible in second-order logic with the addition of a transitive closure operator.

  8. Complexity - Wikipedia

    en.wikipedia.org/wiki/Complexity

    The most popular types of computational complexity are the time complexity of a problem equal to the number of steps that it takes to solve an instance of the problem as a function of the size of the input (usually measured in bits), using the most efficient algorithm, and the space complexity of a problem equal to the volume of the memory used ...

  9. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity) or the number of storage locations it uses (its space complexity). An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input.