Search results
Results from the WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
The Dottie number is the unique real fixed point of the cosine function. In mathematics, the Dottie number or the cosine constant is a constant that is the unique real root of the equation =, where the argument of is in radians. The decimal expansion of the Dottie number is given by:
Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.
The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...
The starting corner equals the product of its two nearest neighbors. For example, sin A = cos A ⋅ tan A {\\displaystyle \\sin A=\\cos A\\cdot \\tan A} The sum of the squares of the two items at the top of a triangle equals the square of the item at the bottom.
Thus, for example, / = is a constructible angle because 15 is the product of the Fermat primes 3 and 5. Similarly π / 12 = 15 ∘ {\displaystyle \pi /12=15^{\circ }} is a constructible angle because 12 is a power of two (4) times a Fermat prime (3).
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.
For example, the cosine and sine of 2π ⋅ 5/37 are the real and imaginary parts, respectively, of the 5th power of the 37th root of unity cos(2π/37) + sin(2π/37)i, which is a root of the degree-37 polynomial x 37 − 1.