enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.

  3. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    In quantum physics, position and momentum are represented by mathematical entities known as Hermitian operators, and the Born rule is used to calculate the expectation values of a position measurement or a momentum measurement. These expectation values will generally change over time; that is, depending on the time at which (for example) a ...

  5. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    With respect to classical physics, conservation laws include conservation of energy, mass (or matter), linear momentum, angular momentum, and electric charge. With respect to particle physics, particles cannot be created or destroyed except in pairs, where one is ordinary and the other is an antiparticle.

  6. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).

  7. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    The momentum operator can be described as a symmetric (i.e. Hermitian), unbounded operator acting on a dense subspace of the quantum state space. If the operator acts on a (normalizable) quantum state then the operator is self-adjoint. In physics the term Hermitian often refers to both symmetric and self-adjoint operators. [7] [8]

  8. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  9. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Momentum space is the set of all momentum vectors p a physical system can have; the momentum vector of a particle corresponds to its motion, with dimension of mass ⋅ length ⋅ time −1. Mathematically, the duality between position and momentum is an example of Pontryagin duality .