Search results
Results from the WOW.Com Content Network
The evolution of the apparent diameter and phases of Venus. A planetary phase is a certain portion of a planet's area that reflects sunlight as viewed from a given vantage point, as well as the period of time during which it occurs. The phase is determined by the phase angle, which is the angle between the planet, the Sun and the Earth.
The apparent brightness of Mercury as seen from Earth is greatest at phase angle 0° (superior conjunction with the Sun) when it can reach magnitude −2.6. [14] At phase angles approaching 180° (inferior conjunction) the planet fades to about magnitude +5 [14] with the exact brightness depending on the phase angle at that particular ...
"Inferior planet" refers to Mercury and Venus, which are closer to the Sun than Earth is. "Superior planet" refers to Mars, Jupiter, Saturn, Uranus, and Neptune (the latter two added later), which are further from the Sun than Earth is. The terms are sometimes used more generally; for example, Earth is an inferior planet relative to Mars.
For some objects, such as the Moon (see lunar phases), Venus and Mercury the phase angle (as seen from the Earth) covers the full 0–180° range. The superior planets cover shorter ranges. For example, for Mars the maximum phase angle is about 45°. For Jupiter, the maximum is 11.1° and for Saturn 6°. [1]
Diagram showing the eastern and western quadratures of a superior planet like Mars. In spherical astronomy, quadrature is the configuration of a celestial object in which its elongation is a right angle (90 degrees), i.e., the direction of the object as viewed from Earth is perpendicular to the position of the Sun relative to Earth.
The rising of a planet above the eastern horizon at sunset is called its acronycal rising, which for a superior planet signifies an opposition, another type of syzygy. When the Moon has an acronycal rising, it will occur near full moon and thus, two or three times a year, a noticeable lunar eclipse .
The phases of Venus result from the planet's orbit around the Sun inside the Earth's orbit giving the telescopic observer a sequence of progressive lighting similar in appearance to the Moon's phases. It presents a full image when it is on the opposite side of the Sun. It is a gibbous phase when it approaches or leaves the opposite side of the Sun.
This diagram shows various possible elongations (ε), each of which is the angular distance between a planet and the Sun from Earth's perspective. In astronomy, a planet's elongation is the angular separation between the Sun and the planet, with Earth as the reference point. [1] The greatest elongation is the maximum angular separation.