enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    For gaseous or fluid bodies, such as stars and giant planets, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a giant planet (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation ...

  3. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    Neptune's second-known satellite (by order of discovery), the irregular moon Nereid, has one of the most eccentric orbits of any satellite in the Solar System. The eccentricity of 0.7512 gives it an apoapsis that is seven times its periapsis distance from Neptune. [j] From July to September 1989, Voyager 2 discovered six moons of Neptune. [162]

  4. Poles of astronomical bodies - Wikipedia

    en.wikipedia.org/wiki/Poles_of_astronomical_bodies

    Venus rotates clockwise, and Uranus has been knocked on its side and rotates almost perpendicular to the rest of the Solar System. The ecliptic remains within 3° of the invariable plane over five million years, [ 2 ] but is now inclined about 23.44° to Earth's celestial equator used for the coordinates of poles.

  5. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    When a galaxy or a planetary system forms, its material takes a shape similar to that of a disk. Most of the material orbits and rotates in one direction. This uniformity of motion is due to the collapse of a gas cloud. [1] The nature of the collapse is explained by conservation of angular momentum.

  6. Orbital resonance - Wikipedia

    en.wikipedia.org/wiki/Orbital_resonance

    Neptune's innermost moon, Naiad, is in a 73:69 fourth-order resonance with the next outward moon, Thalassa. As it orbits Neptune, the more inclined Naiad successively passes Thalassa twice from above and then twice from below, in a cycle that repeats every ~21.5 Earth days. The two moons are about 3540 km apart when they pass each other.

  7. Axial tilt - Wikipedia

    en.wikipedia.org/wiki/Axial_tilt

    The stellar obliquity ψ s, i.e. the axial tilt of a star with respect to the orbital plane of one of its planets, has been determined for only a few systems. By 2012, 49 stars have had sky-projected spin-orbit misalignment λ has been observed, [ 39 ] which serves as a lower limit to ψ s .

  8. Proteus (moon) - Wikipedia

    en.wikipedia.org/wiki/Proteus_(moon)

    Proteus is the second-largest moon of Neptune and is the largest of its regular prograde moons. It is about 420 km (260 mi) in diameter, larger than Nereid, Neptune's third-largest moon. It was not discovered by Earth-based telescopes because Proteus orbits so close to Neptune that it is lost in the glare of reflected sunlight. [15]

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbit of every planet is an ellipse with the sun at one of the two foci. Kepler's first law placing the Sun at one of the foci of an elliptical orbit Heliocentric coordinate system (r, θ) for ellipse. Also shown are: semi-major axis a, semi-minor axis b and semi-latus rectum p; center of ellipse and its two foci marked by