Search results
Results from the WOW.Com Content Network
Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ambient matrix spaces. Vladimir Arnold posed [ 16 ] a problem: Find a canonical form of matrices over a field for which the set of representatives of matrix conjugacy classes is a ...
The form reflects a minimal decomposition of the vector space into subspaces that are cyclic for A (i.e., spanned by some vector and its repeated images under A). Since only one normal form can be reached from a given matrix (whence the "canonical"), a matrix B is similar to A if and only if it has the same rational canonical form as A.
Rather, the Jordan canonical form of () contains one Jordan block for each distinct root; if the multiplicity of the root is m, then the block is an m × m matrix with on the diagonal and 1 in the entries just above the diagonal. in this case, V becomes a confluent Vandermonde matrix. [2]
A canonical form may simply be a convention, or a deep theorem. For example, polynomials are conventionally written with the terms in descending powers: it is more usual to write x 2 + x + 30 than x + 30 + x 2, although the two forms define the same polynomial. By contrast, the existence of Jordan canonical form for a matrix is a deep theorem.
The rational canonical form is determined by the elementary divisors of A; these can be immediately read off from a matrix in Jordan form, but they can also be determined directly for any matrix by computing the Smith normal form, over the ring of polynomials, of the matrix (with polynomial entries) XI n − A (the same one whose determinant ...
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
Constructing a density matrix using a canonical ensemble gives a result of the form = / (), where is the inverse temperature () and is the system's Hamiltonian. The normalization condition that the trace of ρ {\displaystyle \rho } be equal to 1 defines the partition function to be Z ( β ) = t r exp ( − β H ) {\displaystyle Z(\beta ...
In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal , and can be obtained from the original matrix by multiplying on the left and right by invertible square ...