enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    For example, a curling stone sliding along the ice experiences a kinetic force slowing it down. For an example of potential movement, the drive wheels of an accelerating car experience a frictional force pointing forward; if they did not, the wheels would spin, and the rubber would slide backwards along the pavement.

  3. Sliding (motion) - Wikipedia

    en.wikipedia.org/wiki/Sliding_(motion)

    Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.

  4. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    Consider, for one, the familiar example of a marble on the edge of a bowl. If we consider the marble and bowl to be an isolated system, then when the marble drops, the potential energy will be converted to the kinetic energy of motion of the marble. Frictional forces will convert this kinetic energy to heat, and at equilibrium, the marble will ...

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations. [2]

  6. Langevin dynamics - Wikipedia

    en.wikipedia.org/wiki/Langevin_dynamics

    For a system of particles with masses , with coordinates = that constitute a time-dependent random variable, the resulting Langevin equation is [2] [3] ¨ = ˙ + (), where () is the particle interaction potential; is the gradient operator such that () is the force calculated from the particle interaction potentials; the dot is a time derivative ...

  7. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    The unknown part of the equation is y(x+Δx), which can be found if we have the data for the initial values. Runge-Kutta methods → it is more accurate than the Euler method. In this method, an initial condition is required: y = y 0 at x = x 0. The problem is to find the value of y when x = x 0 + h, where h is a given constant.

  8. List of unsolved problems in chemistry - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    RNA folding problem: Is it possible to accurately predict the secondary, tertiary and quaternary structure of a polyribonucleic acid sequence based on its sequence and environment? Protein design : Is it possible to design highly active enzymes de novo for any desired reaction?

  9. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    First steps towards solving the paradox were made by Saint-Venant, who modelled viscous fluid friction. Saint-Venant states in 1847: [11] But one finds another result if, instead of an ideal fluid – object of the calculations of the geometers of the last century – one uses a real fluid, composed of a finite number of molecules and exerting in its state of motion unequal pressure forces or ...