enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.

  3. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]

  4. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis, and are closely related to the concept of a measure. Weight functions can be employed in both discrete and continuous settings.

  5. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average.

  6. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    A solution to this problem is to use an alternate design strategy, e.g. stratified sampling. Weighting, when correctly applied, can potentially improve the efficiency and reduce the bias of unweighted estimators. One very early weighted estimator is the Horvitz–Thompson estimator of the mean. [3]

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  8. Weighted statistics - Wikipedia

    en.wikipedia.org/wiki/Weighted_statistics

    In statistics, there are many applications of "weighting": Weighted mean; Weighted harmonic mean; Weighted geometric mean; Weighted least squares

  9. Method of mean weighted residuals - Wikipedia

    en.wikipedia.org/wiki/Method_of_mean_weighted...

    The method of mean weighted residuals solves (,,, …,) = by imposing that the degrees of freedom are such that: ((,,, …,),) =is satisfied. Where the inner product (,) is the standard function inner product with respect to some weighting function () which is determined usually by the basis function set or arbitrarily according to whichever weighting function is most convenient.