enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...

  3. Double integrator - Wikipedia

    en.wikipedia.org/wiki/Double_integrator

    In systems and control theory, the double integrator is a canonical example of a second-order control system. [1] It models the dynamics of a simple mass in one-dimensional space under the effect of a time-varying force input u {\displaystyle {\textbf {u}}} .

  4. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:

  5. Mason's gain formula - Wikipedia

    en.wikipedia.org/wiki/Mason's_gain_formula

    MGF is an alternate method to finding the transfer function algebraically by labeling each signal, writing down the equation for how that signal depends on other signals, and then solving the multiple equations for the output signal in terms of the input signal. MGF provides a step by step method to obtain the transfer function from a SFG.

  6. Proper transfer function - Wikipedia

    en.wikipedia.org/wiki/Proper_transfer_function

    A strictly proper transfer function is a transfer function where the degree of the numerator is less than the degree of the denominator. The difference between the degree of the denominator (number of poles) and degree of the numerator (number of zeros) is the relative degree of the transfer function.

  7. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  8. Digital biquad filter - Wikipedia

    en.wikipedia.org/wiki/Digital_biquad_filter

    In signal processing, a digital biquad filter is a second order recursive linear filter, containing two poles and two zeros. "Biquad" is an abbreviation of "biquadratic", which refers to the fact that in the Z domain, its transfer function is the ratio of two quadratic functions:

  9. Extra element theorem - Wikipedia

    en.wikipedia.org/wiki/Extra_element_theorem

    Where the Laplace-domain transfer functions and impedances in the above expressions are defined as follows: H(s) is the transfer function with the extra element present. H ∞ (s) is the transfer function with the extra element open-circuited. H 0 (s) is the transfer function with the extra element short-circuited. Z(s) is the impedance of the ...