Search results
Results from the WOW.Com Content Network
A multiplication by a negative number can be seen as a change of direction of the vector of magnitude equal to the absolute value of the product of the factors. When multiplying numbers, the magnitude of the product is always just the product of the two magnitudes. The sign of the product is determined by the following rules:
In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0 .
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...
Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).
In elementary mathematics, the additive inverse is often referred to as the opposite number, [3] [4] or its negative. [5] The unary operation of arithmetic negation [6] is closely related to subtraction [7] and is important in solving algebraic equations. [8] Not all sets where addition is defined have an additive inverse, such as the natural ...
For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4. Indeed, multiplication by 3, followed by division by 3, yields the original number. The division of a number other than 0 by itself equals 1. Several mathematical concepts expand upon the fundamental idea of multiplication.
A commutative ring in which every element is equal to its square (every element is idempotent) is called a Boolean ring; an example from computer science is the ring whose elements are binary numbers, with bitwise AND as the multiplication operation and bitwise XOR as the addition operation. In a totally ordered ring, x 2 ≥ 0 for any x.
This formula follows from the multiplicative formula above by multiplying numerator and denominator by (n − k)!; as a consequence it involves many factors common to numerator and denominator. It is less practical for explicit computation (in the case that k is small and n is large) unless common factors are first cancelled (in particular ...