Ads
related to: how to estimate area in math problems exampleskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The theory was made rigorous a few decades later by Eudoxus of Cnidus, who used it to calculate areas and volumes. It was later reinvented in China by Liu Hui in the 3rd century AD in order to find the area of a circle. [2] The first use of the term was in 1647 by Gregory of Saint Vincent in Opus geometricum quadraturae circuli et sectionum.
In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is T = b h / 2 , {\displaystyle T=bh/2,} where b is the length of the base of the triangle, and h is the height or altitude of the triangle.
An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.
For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus. [5] For a solid shape such as a sphere, cone, or cylinder, the area of its boundary surface is called the surface area.
For example, consider a quadrant (circular sector) inscribed in a unit square. Given that the ratio of their areas is π / 4 , the value of π can be approximated using the Monte Carlo method: [1] Draw a square, then inscribe a quadrant within it. Uniformly scatter a given number of points over the square.
Since the area of the rectangle is ab, the area of the ellipse is π ab/4. We can also consider analogous measurements in higher dimensions. For example, we may wish to find the volume inside a sphere. When we have a formula for the surface area, we can use the same kind of "onion" approach we used for the disk.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.
Ads
related to: how to estimate area in math problems exampleskutasoftware.com has been visited by 10K+ users in the past month