Search results
Results from the WOW.Com Content Network
True specific gravity of a liquid can be expressed mathematically as: =, where is the density of the sample and is the density of water. The apparent specific gravity is simply the ratio of the weights of equal volumes of sample and water in air: =,,, where , represents the weight of the sample measured in air and , the weight of an equal ...
+100 °Bé (specific gravity, 3.325) would be among the densest fluids known (except some liquid metals), such as diiodomethane. Near 0 °Bé would be approximately the density of water. −100 °Bé (specific gravity, 0.615) would be among the lightest fluids known, such as liquid butane.
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C)—the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
The Twaddell scale is a hydrometer scale used for measuring the specific gravity of liquids relative to water. On this scale, a specific gravity of 1.000 is reported as 0, and a specific gravity of 2.000 is reported as 200. [1]
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.
API gravity is thus an inverse measure of a petroleum liquid's density relative to that of water (also known as specific gravity). It is used to compare densities of petroleum liquids . For example, if one petroleum liquid is less dense than another, it has a greater API gravity.