Search results
Results from the WOW.Com Content Network
This definition has the advantage that it does not rely on the exponential function or any trigonometric functions; the definition is in terms of an integral of a simple reciprocal. As an integral, ln( t ) equals the area between the x -axis and the graph of the function 1/ x , ranging from x = 1 to x = t .
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. [4] A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive.
In the lower plot, both the area and population data have been transformed using the logarithm function. In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point z i is replaced with the transformed value y i = f(z i), where f is a function.
In probability and statistics, the logarithmic distribution (also known as the logarithmic series distribution or the log-series distribution) is a discrete probability distribution derived from the Maclaurin series expansion = + + +.
Log-likelihood function is the logarithm of the likelihood function, often denoted by a lowercase l or , to contrast with the uppercase L or for the likelihood. Because logarithms are strictly increasing functions, maximizing the likelihood is equivalent to maximizing the log-likelihood.
The simplicity of this definition, which is matched in many other formulas involving the natural logarithm, leads to the term "natural". The definition of the natural logarithm can then be extended to give logarithm values for negative numbers and for all non-zero complex numbers, although this leads to a multi-valued function: see complex ...
The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.