Search results
Results from the WOW.Com Content Network
In mathematical analysis, the staircase paradox is a pathological example showing that limits of curves do not necessarily preserve their length. [1] It consists of a sequence of "staircase" polygonal chains in a unit square , formed from horizontal and vertical line segments of decreasing length, so that these staircases converge uniformly to ...
On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
The one-sided limit to a point corresponds to the general definition of limit, with the domain of the function restricted to one side, by either allowing that the function domain is a subset of the topological space, or by considering a one-sided subspace, including . [1] [verification needed] Alternatively, one may consider the domain with a ...
Here, one can see that the sequence is converging to the limit 0 as n increases. In the real numbers , a number L {\displaystyle L} is the limit of the sequence ( x n ) {\displaystyle (x_{n})} , if the numbers in the sequence become closer and closer to L {\displaystyle L} , and not to any other number.
If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist. A formal definition is as follows. The limit of f as x approaches p from above is L if:
One-sided limit; Oscillation (mathematics) S. Squeeze theorem; Staircase paradox; Subsequential limit; T. Tannery's theorem This page was last edited on 12 January ...
Limit of a function (ε,_δ)-definition of limit, formal definition of the mathematical notion of limit; Limit of a sequence; One-sided limit, either of the two limits of a function as a specified point is approached from below or from above; Limit inferior and limit superior; Limit of a net; Limit point, in topological spaces; Limit (category ...