Search results
Results from the WOW.Com Content Network
The number of k-combinations for all k is the number of subsets of a set of n elements. There are several ways to see that this number is 2 n . In terms of combinations, ∑ 0 ≤ k ≤ n ( n k ) = 2 n {\textstyle \sum _{0\leq {k}\leq {n}}{\binom {n}{k}}=2^{n}} , which is the sum of the n th row (counting from 0) of the binomial coefficients in ...
One must divide the number of combinations producing the given result by the total number of possible combinations (for example, () =,,).The numerator equates to the number of ways to select the winning numbers multiplied by the number of ways to select the losing numbers.
A k-combination of a set S is a subset of S with k (distinct) elements. The main purpose of the combinatorial number system is to provide a representation, each by a single number, of all () possible k-combinations of a set S of n elements.
Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2) 3=1+1+1=1+2=2+1 (3)
For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x 1 + x 2 + x 3 + x 4 = 10 (with x 1, x 2, x 3, x 4 > 0) as the binomial coefficient
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively. A point on a line gives a combination of 2p and 5p for its given total (green). Multiple points on a line imply multiple possible combinations (blue). Only lines with n = 1 or 3 have no points (red).
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...