enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phases of ice - Wikipedia

    en.wikipedia.org/wiki/Phases_of_ice

    With radiation equilibrium temperatures of 40–50 K, [177] the objects in the Kuiper Belt are expected to have amorphous water ice. While water ice has been observed on several objects, [178] [179] the extreme faintness of these objects makes it difficult to determine the structure of the ices. The signatures of crystalline water ice was ...

  3. Wegener–Bergeron–Findeisen process - Wikipedia

    en.wikipedia.org/wiki/Wegener–Bergeron...

    The Wegener–Bergeron–Findeisen process (after Alfred Wegener, Tor Bergeron and Walter Findeisen []), (or "cold-rain process") is a process of ice crystal growth that occurs in mixed phase clouds (containing a mixture of supercooled water and ice) in regions where the ambient vapor pressure falls between the saturation vapor pressure over water and the lower saturation vapor pressure over ice.

  4. Water cycle - Wikipedia

    en.wikipedia.org/wiki/Water_cycle

    The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.

  5. Ice - Wikipedia

    en.wikipedia.org/wiki/Ice

    An alternative formulation of the phase diagram for ... repeat the cycle. The result is a stratified ice ... water droplets freeze onto ...

  6. Nucleation - Wikipedia

    en.wikipedia.org/wiki/Nucleation

    The freezing of small water droplets to ice is an important process, particularly in the formation and dynamics of clouds. [1] Water (at atmospheric pressure) does not freeze at 0 °C, but rather at temperatures that tend to decrease as the volume of the water decreases and as the concentration of dissolved chemicals in the water increases.

  7. Ice nucleus - Wikipedia

    en.wikipedia.org/wiki/Ice_nucleus

    Contact nucleation can occur if an ice nucleus collides with a supercooled droplet, but the more important mechanism of freezing is when an ice nucleus becomes immersed in a supercooled water droplet and then triggers freezing. In the absence of an ice nucleating particle, pure water droplets can persist in a supercooled state to temperatures ...

  8. Cloud physics - Wikipedia

    en.wikipedia.org/wiki/Cloud_physics

    Water droplets commonly remain as liquid water and do not freeze, even well below 0 °C (32 °F). Ice nuclei that may be present in an atmospheric droplet become active for ice formation at specific temperatures in between 0 °C (32 °F) and −38 °C (−36 °F), depending on nucleus geometry and composition.

  9. Snowflake - Wikipedia

    en.wikipedia.org/wiki/Snowflake

    Once a water droplet has frozen as an ice nucleus, it grows in a supersaturated environment—wherein liquid moisture coexists with ice beyond its equilibrium point at temperatures below freezing. The droplet then grows by deposition of water molecules in the air (vapor) onto the ice crystal surface where they are collected.