enow.com Web Search

  1. Ad

    related to: cut sets and vertices worksheets
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Worksheets

      All the printables you need for

      math, ELA, science, and much more.

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

Search results

  1. Results from the WOW.Com Content Network
  2. Cut (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cut_(graph_theory)

    A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...

  3. Vertex separator - Wikipedia

    en.wikipedia.org/wiki/Vertex_separator

    More precisely, there is always exactly one or exactly two vertices, which amount to such a separator, depending on whether the tree is centered or bicentered. [ 2 ] As opposed to these examples, not all vertex separators are balanced , but that property is most useful for applications in computer science, such as the planar separator theorem .

  4. Karger's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karger's_algorithm

    A cut (,) in an undirected graph = (,) is a partition of the vertices into two non-empty, disjoint sets =.The cutset of a cut consists of the edges {:,} between the two parts. . The size (or weight) of a cut in an unweighted graph is the cardinality of the cutset, i.e., the number of edges between the two parts

  5. Menger's theorem - Wikipedia

    en.wikipedia.org/wiki/Menger's_theorem

    The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.

  6. Minimum cut - Wikipedia

    en.wikipedia.org/wiki/Minimum_cut

    The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.

  7. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    In particular, a complete graph with n vertices, denoted K n, has no vertex cuts at all, but κ(K n) = n − 1. A vertex cut for two vertices u and v is a set of vertices whose removal from the graph disconnects u and v. The local connectivity κ(u, v) is the size of a smallest vertex cut separating u and v.

  8. Split (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Split_(graph_theory)

    The cut-set of the split is just the single bridge edge, which is a special case of a complete bipartite subgraph. Similarly, if v is an articulation point of a graph that is not 2-vertex-connected , then the graph has multiple splits in which v and some but not all of the components formed by its deletion are on one side, and the remaining ...

  9. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.

  1. Ad

    related to: cut sets and vertices worksheets