Search results
Results from the WOW.Com Content Network
For example, all circles are similar to each other, all squares are similar to each other, and all equilateral triangles are similar to each other. On the other hand, ellipses are not all similar to each other, rectangles are not all similar to each other, and isosceles triangles are not all similar to each other. This is because two ellipses ...
Degree (angle) – Unit of plane angle where a full circle equals 360° Diameter – Straight line segment that passes through the centre of a circle; Disk (mathematics) – Plane figure, bounded by circle; Horn angle – Type of curvilinear angle; Measurement of a Circle; π – Number, approximately 3.14 List of topics related to π
For example, the first and fourth of Euclid's postulates, that there is a unique line between any two points and that all right angles are equal, hold in elliptic geometry. Postulate 3, that one can construct a circle with any given center and radius, fails if "any radius" is taken to mean "any real number", but holds if it is taken to mean ...
Inscribed-angle theorem. An inscribed angle (examples are the blue and green angles in the figure) is exactly half the corresponding central angle (red). Hence, all inscribed angles that subtend the same arc (pink) are equal. Angles inscribed on the arc (brown) are supplementary.
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
In the preface of On the Section of a Cylinder, Serenus states that his motivation for writing this work, as summarized by Heath, was that "many persons who were students of geometry were under the erroneous that the oblique section of a cylinder was different from the oblique section of a cone known as an ellipse, whereas it is of course the ...
The perpendicular bisectors of all chords of a circle are concurrent at the center of the circle. The lines perpendicular to the tangents to a circle at the points of tangency are concurrent at the center. All area bisectors and perimeter bisectors of a circle are diameters, and they are concurrent at the circle's center.
Any ellipsoid is the image of the unit sphere under some affine transformation, and any plane is the image of some other plane under the same transformation. So, because affine transformations map circles to ellipses, the intersection of a plane with an ellipsoid is an ellipse or a single point, or is empty. [8] Obviously, spheroids contain ...