enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    [59] [60] They have fewer parameters than LSTM, as they lack an output gate. [61] Their performance on polyphonic music modeling and speech signal modeling was found to be similar to that of long short-term memory. [62] There does not appear to be particular performance difference between LSTM and GRU. [62] [63]

  4. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs.

  5. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Its architecture consists of two parts. The encoder is an LSTM that takes in a sequence of tokens and turns it into a vector. The decoder is another LSTM that converts the vector into a sequence of tokens. Similarly, another 130M-parameter model used gated recurrent units (GRU) instead of LSTM. [22]

  6. MuZero - Wikipedia

    en.wikipedia.org/wiki/MuZero

    MuZero (MZ) is a combination of the high-performance planning of the AlphaZero (AZ) algorithm with approaches to model-free reinforcement learning. The combination allows for more efficient training in classical planning regimes, such as Go, while also handling domains with much more complex inputs at each stage, such as visual video games.

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A RNN (often a LSTM) where a series is decomposed into a number of scales where every scale informs the primary length between two consecutive points. A first order scale consists of a normal RNN, a second order consists of all points separated by two indices and so on. The Nth order RNN connects the first and last node.

  8. In character: Nuggets big man Nikola Jokic shows up to game ...

    www.aol.com/news/character-nuggets-big-man...

    That character was “Gru,” the protagonist from the “Despicable Me” movies. Jokic, the two-time NBA MVP for the Denver Nuggets, wore a similar outfit and signature wrap-around striped scarf ...

  9. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In RL, a policy is a function that maps a game state to a game action. In RLHF, the "game" is the game of replying to prompts. A prompt is a game state, and a response is a game action. This is a fairly trivial kind of game, since every game lasts for exactly one step. Nevertheless, it is a game, and so RL algorithms can be applied to it.