Search results
Results from the WOW.Com Content Network
Fluorescence microscopy requires intense, near-monochromatic, illumination which some widespread light sources, like halogen lamps cannot provide. [4] Four main types of light source are used, including xenon arc lamps or mercury-vapor lamps with an excitation filter, lasers, supercontinuum sources, and high-power LEDs.
An example of an experimentally derived point spread function from a confocal microscope using a 63x 1.4NA oil objective. It was generated using Huygens Professional deconvolution software. Shown are views in xz, xy, yz and a 3D representation. In microscopy, experimental determination of PSF requires sub-resolution (point-like) radiating sources.
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
This shape is called the point spread function (PSF) of the microscope imaging system. Since any fluorescence image is made up of a large number of such small fluorescent light sources, the image is said to be "convolved by the point spread function". The mathematically modeled PSF of a terahertz laser pulsed imaging system is shown on the right.
Köhler illumination is a method of specimen illumination used for transmitted and reflected light (trans- and epi-illuminated) optical microscopy.Köhler illumination acts to generate an even illumination of the sample and ensures that an image of the illumination source (for example a halogen lamp filament) is not visible in the resulting image.
The light path of a bright-field microscope is extremely simple; no additional components are required beyond the normal light-microscope setup. The light path begins at the illuminator or the light source on the base of the microscope. Often a halogen lamp is used. The light travels through the objective lens into the ocular lens, through ...
The pupil function or aperture function describes how a light wave is affected upon transmission through an optical imaging system such as a camera, microscope, or the human eye. More specifically, it is a complex function of the position in the pupil [ 1 ] or aperture (often an iris ) that indicates the relative change in amplitude and phase ...
Fluorescence lifetimes can be determined in the frequency domain by a phase-modulation method. The method uses a light source that is pulsed or modulated at high frequency (up to 500 MHz) such as an LED, diode laser or a continuous wave source combined with an electro-optic modulator or an acousto-optic modulator. The fluorescence is (a ...