Search results
Results from the WOW.Com Content Network
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. [1] It is also known as Lorentz contraction or Lorentz–FitzGerald contraction (after Hendrik Lorentz and George Francis FitzGerald ) and is usually only noticeable ...
Time dilation and length contraction. Length of the atmosphere: The contraction formula is given by = /, where L 0 is the proper length of the atmosphere and L its contracted length. As the atmosphere is at rest in S, we have γ=1 and its proper Length L 0 is measured.
The proper length of an object is the length of the object in the frame in which the object is at rest. Also, this contraction only affects the dimensions of the object which are parallel to the relative velocity between the object and observer. Thus, lengths perpendicular to the direction of motion are unaffected by length contraction.
This variability in length is just the Lorentz contraction. Similarly, a physical angle is defined as the angle formed by three simultaneous events, and this angle will also be a relative quantity. In the above paradox, although the rod and the plane of the ring are parallel in the rest frame of the ring, they are not parallel in the rest frame ...
For instance, Bell argued that the length contraction of objects as well as the lack of length contraction between objects in frame S can be explained using relativistic electromagnetism. The distorted electromagnetic intermolecular fields cause moving objects to contract, or to become stressed if hindered from doing so.
(The Trouton–Rankine experiment conducted in 1908 also gave a negative result when measuring the influence of length contraction on an electromagnetic coil.) [1] To explain all experiments conducted before 1904, Lorentz was forced to again expand his theory by introducing the complete Lorentz transformation .
The so-called Length contraction without expansion perpendicularly to the line of motion and by the precise value = / (where l 0 is the length at rest in the aether) was given by Larmor in 1897 and by Lorentz in 1904. In the same year, Lorentz also argued that electrons themselves are also affected by this contraction.
This is the perceptual length contraction formula, [24] [18] so-named [23] in analogy with the physical length contraction described in the theory of relativity. Note that, just as observed in rabbit illusion experiments, the formula shows that l* underestimates l to a greater extent when t is made smaller; as t becomes large, l* approaches l ...