Search results
Results from the WOW.Com Content Network
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
The Minkowski Sum of Two Triangles and The Minkowski Sum of a Disk and a Polygon by George Beck, The Wolfram Demonstrations Project. Minkowski's addition of convex shapes by Alexander Bogomolny: an applet; Wikibooks:OpenSCAD User Manual/Transformations#minkowski by Marius Kintel: Application; Application of Minkowski Addition to robotics by ...
When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.
The sets of vectors representing two polytopes can be added by taking the union of the two sets and, when the two sets contain parallel vectors with the same sign, replacing them by their sum. The resulting operation on polytope shapes is called the Blaschke sum .
Projective resolution of a module M is unique up to a chain homotopy, i.e., given two projective resolutions P 0 → M and P 1 → M of M there exists a chain homotopy between them. Resolutions are used to define homological dimensions. The minimal length of a finite projective resolution of a module M is called its projective dimension and ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The vertices of the arrangement are isolated points belonging to two or more lines, where those lines cross each other. [1] The boundary of a cell is the system of edges that touch it, and the boundary of an edge is the set of vertices that touch it (one vertex for a ray and two for a line segment).
A property of Euclidean spaces is the parallelogram property of vectors: If two segments are equipollent, then they form two sides of a parallelogram: If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.