Search results
Results from the WOW.Com Content Network
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.
Integration with established probabilistic programming languages including; PyStan (the Python interface of Stan), PyMC, [15] Edward [16] Pyro, [17] and easily integrated with novel or bespoke Bayesian analyses. ArviZ is also available in Julia, using the ArviZ.jl interface
Stan: A probabilistic programming language for Bayesian inference and optimization, Journal of Educational and Behavioral Statistics. Hoffman, Matthew D., Bob Carpenter, and Andrew Gelman (2012). Stan, scalable software for Bayesian modeling Archived 2015-01-21 at the Wayback Machine, Proceedings of the NIPS Workshop on Probabilistic Programming.
Bambi is a high-level Bayesian model-building interface written in Python.It works with the PyMC probabilistic programming framework. Bambi provides an interface to build and solve Bayesian generalized (non-)linear multivariate multilevel models.
Python (programming language) with the packages: Blackjax. emcee, [25] NumPyro [26] PyMC; R (programming language) with the packages adaptMCMC, atmcmc, BRugs, mcmc, MCMCpack, ramcmc, rjags, rstan, etc. Stan; TensorFlow Probability (probabilistic programming library built on TensorFlow)
Skip lists are a probabilistic data structure that seem likely to supplant balanced trees as the implementation method of choice for many applications. Skip list algorithms have the same asymptotic expected time bounds as balanced trees and are simpler, faster and use less space. —
ProbLog is a probabilistic logic programming language that extends Prolog with probabilities. [1] [2] [3] It minimally extends Prolog by adding the notion of a probabilistic fact, which combines the idea of logical atoms and random variables. Similarly to Prolog, ProbLog can query an atom.