Search results
Results from the WOW.Com Content Network
The olefin feed to an alkylation unit generally originates from a FCCU and contains butene, isobutene, and possibly propene and/or amylenes. The olefin feed is also likely to contain diluents (such as propane, n-butane, and n-pentane), noncondensables (such as ethane and hydrogen) and contaminants. Diluents in principle have no effect on the ...
The Julia olefination (also known as the Julia–Lythgoe olefination) is the chemical reaction used in organic chemistry of phenyl sulfones (1) with aldehydes (or ketones) to give alkenes (olefins)(3) after alcohol functionalization and reductive elimination using sodium amalgam or SmI 2.
Formerly the reaction had been called "olefin disproportionation." In this reaction 2-pentene forms a rapid (a matter of seconds) chemical equilibrium with 2-butene and 3-hexene. No double bond migrations are observed; the reaction can be started with the butene and hexene as well and the reaction can be stopped by addition of methanol.
The reaction proceeds through generation of an acylium center. The reaction is completed by deprotonation of the arenium ion by AlCl 4 −, regenerating the AlCl 3 catalyst. However, in contrast to the truly catalytic alkylation reaction, the formed ketone is a moderate Lewis base, which forms a complex with the strong Lewis acid aluminum ...
Typical route for alkylation of benzene with ethylene and ZSM-5 as a heterogeneous catalyst. Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene (or their equivalents). [1] Alkylating agents are reagents for effecting ...
Murai reactions have also been reported with disubstituted alkynes. [6] Bidentate directing groups allow ortho alkylation of aromatic rings with α,β-unsaturated ketones, which typically are unreactive in Murai reactions. [7] Early examples of the reaction suffered from side products of alkylation at both ortho positions.
The Meerwein arylation is an organic reaction involving the addition of an aryl diazonium salt (ArN 2 X) to an electron-poor alkene usually supported by a metal salt. [1] The reaction product is an alkylated arene compound. The reaction is named after Hans Meerwein, one of its inventors who first published it in 1939. Meerwein arylation
This category encompasses olefination reactions, those that introduce a carbon–carbon double bond into a product molecule, creating an alkene or olefin. Pages in category "Olefination reactions" The following 21 pages are in this category, out of 21 total.