Search results
Results from the WOW.Com Content Network
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
Burnup is an important factor in determining the types and abundances of isotopes produced by a fission reactor. Breeder reactors by design have high burnup compared to a conventional reactor, as breeder reactors produce more of their waste in the form of fission products, while most or all of the actinides are meant to be fissioned and destroyed.
Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232 Th absorbs neutrons to produce 233 U. This parallels the process in uranium breeder reactors whereby fertile 238 U absorbs neutrons to form fissile 239 Pu. Depending on the design of the reactor and fuel cycle, the ...
A two fluid reactor that has thorium in the fuel salt is sometimes called a "one and a half fluid" reactor, or 1.5 fluid reactor. [26] This is a hybrid, with some of the advantages and disadvantages of both 1 fluid and 2 fluid reactors. Like the 1 fluid reactor, it has thorium in the fuel salt, which complicates the fuel processing.
Much of their work culminated with the Molten-Salt Reactor Experiment (MSRE). MSRE was a 7.4 MW th test reactor simulating the neutronic "kernel" of a type of epithermal thorium molten salt breeder reactor called the liquid fluoride thorium reactor (LFTR). The large (expensive) breeding blanket of thorium salt was omitted in favor of neutron ...
As a breeder reactor, it converts thorium into the nuclear fuel uranium-233. To achieve reasonable neutron economy, the chosen single-salt design results in significantly larger feasible size [ clarification needed ] than a two-salt reactor (where blanket is separated from core, which involves graphite-tube manufacturing/sealing complications).
^Location: the LF1 reactor is sited within an industrial park located in Hongshagang (town), Minqin (county), Wuwei (prefecture), Gansu (province), China. As per official documentation, the TMSR-LF1 site is located at 38°57'31" N, 102°36'55" E.
It was a test reactor simulating the neutronic "kernel" of a type of inherently safer epithermal thorium breeder reactor called the liquid fluoride thorium reactor. It primarily used two fuels: first uranium-235 and later uranium-233. The latter 233 UF 4 was the result of breeding from thorium in other reactors. Since this was an engineering ...