Search results
Results from the WOW.Com Content Network
Plutonium is an element in which the 5f electrons are the transition border between delocalized and localized; it is therefore considered one of the most complex elements. [46] The anomalous behavior of plutonium is caused by its electronic structure.
Plutonium (94 Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238 Pu in 1940.
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001.
The Live Chart of Nuclides – IAEA Color-map of fission product yields, and detailed data by click on a nuclide. Periodic Table with isotope decay chain displays. Click on element, and then isotope mass number to see the decay chain (link to uranium 235 ).
Plutonium (Pu, atomic number 94), first synthesized in 1940, is another such element. It is the element with the largest number of protons (atomic number) to occur in nature, but it does so in such tiny quantities that it is far more practical to synthesize it. Plutonium is known mainly for its use in atomic bombs and nuclear reactors. [4]
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
The first table is for even-atomic numbered elements, which tend to have far more primordial nuclides, due to the stability conferred by proton-proton pairing. A second separate table is given for odd-atomic numbered elements, which tend to have far fewer stable and long-lived (primordial) unstable nuclides. [citation needed]