Search results
Results from the WOW.Com Content Network
Some redox flavoproteins non-covalently bind to FAD like Acetyl-CoA-dehydrogenases which are involved in beta-oxidation of fatty acids and catabolism of amino acids like leucine (isovaleryl-CoA dehydrogenase), isoleucine, (short/branched-chain acyl-CoA dehydrogenase), valine (isobutyryl-CoA dehydrogenase), and lysine (glutaryl-CoA dehydrogenase ...
Fatty acids with an odd number of carbons are found in the lipids of plants and some marine organisms. Many ruminant animals form a large amount of 3-carbon propionate during the fermentation of carbohydrates in the rumen. [4] Long-chain fatty acids with an odd number of carbon atoms are found particularly in ruminant fat and milk. [5]
This specificity reflects the distinct metabolic roles of the respective coenzymes, and is the result of distinct sets of amino acid residues in the two types of coenzyme-binding pocket. For instance, in the active site of NADP-dependent enzymes, an ionic bond is formed between a basic amino acid side-chain and the acidic phosphate group of NADP +.
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate , and around 4% of cellular enzymes use it (or a thioester ) as a substrate.
There are 18 key atoms in isoalloxazine that make up its characteristic three-ring structure. The R-group varies and differentiates various flavins. Riboflavin. Flavins (from Latin flavus, "yellow") refers generally to the class of organic compounds containing the tricyclic heterocycle isoalloxazine or its isomer alloxazine, and derivatives thereof.
Five of these nine classes are involved in fatty acid β-oxidation (SCAD, MCAD, LCAD, VLCAD, and VLCAD2), and the other four are involved in branched chain amino acid metabolism (i3VD, i2VD, GD, and iBD). Most acyl-CoA dehydrogenases are α 4 homotetramers, and in two cases (for very long chain fatty acid substrates) they are α 2 homodimers ...
Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. [ 1 ] [ 2 ] The process supplies energy to certain organs, particularly the brain , heart and skeletal muscle , under specific scenarios including fasting , caloric restriction , sleep, [ 3 ] or others.
Simplified outline of the catabolism of carbohydrates, fatty acids, and amino acids in the synthesis of ATP. Bioenergetic systems are metabolic processes that relate to the flow of energy in living organisms. Those processes convert energy into adenosine triphosphate (ATP), which is the form suitable for muscular activity.