Search results
Results from the WOW.Com Content Network
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2] That given point is the center of the sphere, and r is the sphere's radius.
Such a parametric equation is called a parametric form of the solution of the system. [ 10 ] The standard method for computing a parametric form of the solution is to use Gaussian elimination for computing a reduced row echelon form of the augmented matrix.
Considered extrinsically, as a hypersurface embedded in (+) -dimensional Euclidean space, an -sphere is the locus of points at equal distance (the radius) from a given center point. Its interior , consisting of all points closer to the center than the radius, is an ( n + 1 ) {\displaystyle (n+1)} -dimensional ball .
The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...
Such a parametric equation completely determines the curve, without the need of any interpretation of t as time, and is thus called a parametric equation of the curve (this is sometimes abbreviated by saying that one has a parametric curve). One similarly gets the parametric equation of a surface by considering functions of two parameters t and u.
Parametric equations of surfaces are often irregular at some points. For example, all but two points of the unit sphere, are the image, by the above parametrization, of exactly one pair of Euler angles (modulo 2 π). For the remaining two points (the north and south poles), one has cos v = 0, and the longitude u may take any values. Also, there ...
For a plane, a sphere, and a torus there exist simple parametric representations. This is not true for the fourth example. The implicit function theorem describes conditions under which an equation F ( x , y , z ) = 0 {\displaystyle F(x,y,z)=0} can be solved (at least implicitly) for x , y or z .