enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...

  3. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...

  4. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The number N(q, n) of monic irreducible polynomials of degree n over GF(q) is given by [4] (,) = /, where μ is the Möbius function. This formula is an immediate consequence of the property of X q − X above and the Möbius inversion formula.

  5. Cantor–Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Cantor–Zassenhaus_algorithm

    The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...

  6. Primitive element theorem - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_theorem

    Theorem statement. The primitive element theorem states: Every separable field extension of finite degree is simple. This theorem applies to algebraic number fields, i.e. finite extensions of the rational numbers Q, since Q has characteristic 0 and therefore every finite extension over Q is separable. Using the fundamental theorem of Galois ...

  7. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...

  8. Minimal polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(field...

    The minimal polynomial f of α is irreducible, i.e. it cannot be factorized as f = gh for two polynomials g and h of strictly lower degree. To prove this, first observe that any factorization f = gh implies that either g ( α ) = 0 or h ( α ) = 0, because f ( α ) = 0 and F is a field (hence also an integral domain ).

  9. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of and is not a divisor of for any k < n. Its roots are all n th primitive roots of unity , where k runs over the positive integers less than n and coprime to n (and i is the imaginary unit ...