enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Irreducible polynomials over finite fields are also useful for pseudorandom number generators using feedback shift registers and discrete logarithm over F 2 n. The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace ...

  3. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The union of GF(4) and GF(8) has thus 10 elements. The remaining 54 elements of GF(64) generate GF(64) in the sense that no other subfield contains any of them. It follows that they are roots of irreducible polynomials of degree 6 over GF(2). This implies that, over GF(2), there are exactly 9 = ⁠ 54 / 6 ⁠ irreducible monic polynomials of ...

  4. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(3) the polynomial x 2 + 1 is irreducible but not primitive because it divides x 4 − 1: its roots generate a cyclic group of order 4, while the multiplicative group of GF(3 2) is a cyclic group of order 8. The polynomial x 2 + 2x + 2, on the other hand, is primitive. Denote one of its roots by α.

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...

  6. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  7. Rabin fingerprint - Wikipedia

    en.wikipedia.org/wiki/Rabin_fingerprint

    Given an n-bit message m 0,...,m n-1, we view it as a polynomial of degree n-1 over the finite field GF(2). = + + … +We then pick a random irreducible polynomial ⁠ ⁠ of degree k over GF(2), and we define the fingerprint of the message m to be the remainder () after division of () by () over GF(2) which can be viewed as a polynomial of degree k − 1 or as a k-bit number.

  8. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    To state it precisely, let F = GF(q) be the finite field with q elements, for some fixed q, and let N n be the number of monic irreducible polynomials over F whose degree is equal to n. That is, we are looking at polynomials with coefficients chosen from F , which cannot be written as products of polynomials of smaller degree.

  9. Primitive element theorem - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_theorem

    Theorem statement. The primitive element theorem states: Every separable field extension of finite degree is simple. This theorem applies to algebraic number fields, i.e. finite extensions of the rational numbers Q, since Q has characteristic 0 and therefore every finite extension over Q is separable. Using the fundamental theorem of Galois ...