enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Appearance. In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is ...

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...

  4. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Here the greatest common divisor of 0 and 0 is taken to be 0.The integers x and y are called Bézout coefficients for (a, b); they are not unique.A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that | x | ≤ | b/d | and | y | ≤ | a/d |; equality occurs only if one of a and b is a multiple ...

  5. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's theorem. Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm. Using Fibonacci numbers, he proved in 1844 [ 1 ][ 2 ] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5 k steps, where k is the number of digits (decimal) of ...

  6. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Coprime integers. In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. [ 1 ] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. [ 2 ]

  7. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    In the following Diophantine equations, w, x, y, and z are the unknowns and the other letters are given constants: a x + b y = c {\displaystyle ax+by=c} This is a linear Diophantine equation or Bézout's identity. w 3 + x 3 = y 3 + z 3 {\displaystyle w^ {3}+x^ {3}=y^ {3}+z^ {3}} The smallest nontrivial solution in positive integers is 123 + 13 ...

  8. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    The positive integers may be partially ordered by divisibility: if a divides b (that is, if b is an integer multiple of a) write a ≤ b (or equivalently, b ≥ a). (Note that the usual magnitude-based definition of ≤ is not used here.) Under this ordering, the positive integers become a lattice, with meet given by the gcd and join given by ...

  9. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    Euclid's lemma — If a prime pdivides the product abof two integers aand b, then pmust divide at least one of those integers aor b. For example, if p= 19, a= 133, b= 143, then ab= 133 × 143 = 19019, and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In fact, 133 = 19 × 7.