enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic, or full moment, strength and is larger than the elastic section modulus, reflecting the section's strength beyond the elastic range.

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Quantities used in the definition of the section modulus of a beam. The maximum tensile stress at a cross-section is at the location z = c 1 {\displaystyle z=c_{1}} and the maximum compressive stress is at the location z = − c 2 {\displaystyle z=-c_{2}} where the height of the cross-section is h = c 1 + c 2 {\displaystyle h=c_{1}+c_{2}} .

  4. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The parallel axis theorem can be used to determine the second moment of area of a rigid body about any axis, given the body's second moment of area about a parallel axis through the body's centroid, the area of the cross section, and the perpendicular distance (d) between the axes. ′ = +

  5. Plastic moment - Wikipedia

    en.wikipedia.org/wiki/Plastic_Moment

    In structural engineering, the plastic moment (M p) is a property of a structural section. It is defined as the moment at which the entire cross section has reached its yield stress . This is theoretically the maximum bending moment that the section can resist – when this point is reached a plastic hinge is formed and any load beyond this ...

  6. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  7. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.

  8. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    Flexural modulus measurement For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the ...

  9. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  1. Related searches angle section modulus calculator rectangle volume and diameter table for kids

    plastic section modulus formulaelastic section modulus
    plastic section modulus chart