enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 2-factor theorem - Wikipedia

    en.wikipedia.org/wiki/2-factor_theorem

    In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows: [ 1 ] Let G {\displaystyle G} be a regular graph whose degree is an even number, 2 k {\displaystyle 2k} .

  3. Primorial - Wikipedia

    en.wikipedia.org/wiki/Primorial

    1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310. We see that for composite n every term n# simply duplicates the preceding term (n − 1)#, as given in the definition. In the above example we have 12# = p 5 # = 11# since 12 is a composite number. Primorials are related to the first Chebyshev function, written ϑ(n) or θ(n) according to:

  4. Cayley's formula - Wikipedia

    en.wikipedia.org/wiki/Cayley's_formula

    The formula was first discovered by Carl Wilhelm Borchardt in 1860, and proved via a determinant. [2] In a short 1889 note, Cayley extended the formula in several directions, by taking into account the degrees of the vertices. [3] Although he referred to Borchardt's original paper, the name "Cayley's formula" became standard in the field.

  5. 62 (number) - Wikipedia

    en.wikipedia.org/wiki/62_(number)

    62 is: the eighteenth discrete semiprime ( 2 × 31 {\displaystyle 2\times 31} ) and tenth of the form (2.q), where q is a higher prime. with an aliquot sum of 34 ; itself a semiprime , within an aliquot sequence of seven composite numbers (62, 34 , 20 , 22 , 14 , 10 , 8 , 7 , 1 ,0) to the Prime in the 7 -aliquot tree.

  6. Factor graph - Wikipedia

    en.wikipedia.org/wiki/Factor_graph

    with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.

  7. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors. A 2 ...

  8. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS). An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a).

  9. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.