Search results
Results from the WOW.Com Content Network
The Earth's atmospheric circulation varies from year to year, but the large-scale structure of its circulation remains fairly constant. The smaller-scale weather systems – mid-latitude depressions , or tropical convective cells – occur chaotically, and long-range weather predictions of those cannot be made beyond ten days in practice, or a ...
If the Earth were tidally locked to the Sun, solar heating would cause winds across the mid-latitudes to blow in a poleward direction, away from the subtropical ridge. . However, the Coriolis effect caused by the rotation of Earth tends to deflect poleward winds eastward from north (to the right) in the Northern Hemisphere and eastward from south (to the left) in the Southern Hemisph
In the study of Earth's atmosphere, polar easterlies are the dry, cold prevailing winds that blow around the high-pressure areas of the polar highs at the North and South Poles. [1] Cold air subsides at the poles creating high pressure zones, forcing an equatorward outflow of air; that outflow is then deflected westward by the Coriolis effect .
Besides the westerlies, and trade winds, the large surfaces of land also effect the wind, causing cyclones, hurricanes and other deviations to the normal direction of trade wind File usage The following 10 pages use this file:
It is also referred as the geostrophic wind. [2] Pressure differences depend, in turn, on the average temperature in the air column. As the sun does not heat the Earth evenly, there is a temperature difference between the poles and the equator, creating air masses with more or less homogeneous temperature with latitude.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In meteorology, prevailing wind in a region of the Earth's surface is a surface wind that blows predominantly from a particular direction. The dominant winds are the trends in direction of wind with the highest speed over a particular point on the Earth's surface at any given time.
The term "polar wind" was coined [7]: 1937 in 1968 in a pair of articles by Banks and Holzer [8] and by Ian Axford. [9] Since the process by which the ionospheric plasma flows away from the Earth along magnetic field lines, is similar to the flow of solar plasma away from the Sun's corona (the solar wind), Axford suggested the term "polar wind."