Search results
Results from the WOW.Com Content Network
The binomial distribution is the basis for the binomial test of statistical significance. [1] The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the ...
The binomial test is useful to test hypotheses about the probability of success: : = where is a user-defined value between 0 and 1.. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value:
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
The binomial distribution is the basis for the p-chart and requires the following assumptions: [2]: 267 The probability of nonconformity p is the same for each unit; Each unit is independent of its predecessors or successors; The inspection procedure is the same for each sample and is carried out consistently from sample to sample
The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics , empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.
The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this