enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  3. Banach fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Banach_fixed-point_theorem

    In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.

  4. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    In order theory, the least fixed point of a function from a partially ordered set (poset) to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique.

  5. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    During the 20th century numerous fixed-point theorems were developed, and even a branch of mathematics called fixed-point theory. [38] Brouwer's theorem is probably the most important. [ 39 ] It is also among the foundational theorems on the topology of topological manifolds and is often used to prove other important results such as the Jordan ...

  6. Fixed-point computation - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_computation

    Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.

  7. Lawvere's fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Lawvere's_fixed-point_theorem

    In mathematics, Lawvere's fixed-point theorem is an important result in category theory. [1] It is a broad abstract generalization of many diagonal arguments in mathematics and logic, such as Cantor's diagonal argument, Cantor's theorem, Russell's paradox, Gödel's first incompleteness theorem, Turing's solution to the Entscheidungsproblem, and Tarski's undefinability theorem.

  8. Fixed-point theorems in infinite-dimensional spaces - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorems_in...

    Schauder fixed-point theorem: Let C be a nonempty closed convex subset of a Banach space V. If f : C → C is continuous with a compact image, then f has a fixed point. Tikhonov (Tychonoff) fixed-point theorem: Let V be a locally convex topological vector space. For any nonempty compact convex set X in V, any continuous function f : X → X has ...

  9. Kakutani fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Kakutani_fixed-point_theorem

    The Kakutani fixed point theorem can be used to prove the minimax theorem in the theory of zero-sum games. This application was specifically discussed by Kakutani's original paper. [1] Mathematician John Nash used the Kakutani fixed point theorem to prove a major result in game theory. [2]